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A B S T R A C T

Degree assortativity characterizes the propensity for large-degree nodes to connect to other large-degree nodes
and low-degree to low-degree. It is important to describe the forces forming the network and to predict the
behavior of dynamic systems on the network. To understand the evolutionary dynamics of degree assortativity,
we collect a variety of empirical temporal social networks, and find that there is a universal pattern that the
degree assortativity increases at the beginning of evolution and then decreases to a long-lasting stable level. We
develop a bidirectional selection model to re-construct the evolution dynamic. In our model, we assume each
individual has a social status that—in analogy to Pareto’s wealth distribution—follows a power-law distribution.
We assume the social status determines the probability of an interaction between two actors. By varying the ratio
of link establishment from within the same status level to across different status levels, the simulated network
can be tuned to be assortative or disassortative. This suggests that the rise-and-fall pattern of degree assortativity
is a consequence of the different network-forming forces active at different mixing of status. Our simulations
indicate that Pareto social status distribution in the population may drive the social evolution in a way of self-
optimization to promote the social interaction among individuals and the status gap plays an important role for
the assortativity of the social network.

Introduction

The rapid development of social networking platforms, such as
Facebook, Twitter, WeChat, Sina microblogs, etc., has brought together
millions of users to share their interests and maintain social interactions
(Faraj et al., 2011). Understanding the structure of social networks is
important for comprehending the evolutionary, functional, and dyna-
mical processes taking place in these systems (Barabási and Albert,
1999; Strogatz, 2001; Barrat et al., 2008). Thus, the statistics and dy-
namics of social networking services have attracted a lot of attention in
the past years. (Ohtsuki et al., 2006; Opsahl et al., 2010; Del Vicario
et al., 2017; Becker et al., 2017; Kim and Hastak, 2018). Degree as-
sortativity is one of the most important structural measurement for the
study of social networks, as it has been revealed that dynamics of
networked systems, including such as synchronization, percolation,
social organization, network robustness (Newman and Park, 2003;
Boguná et al., 2003; Holme and Zhao, 2007; Di Bernardo et al., 2007;
Zhou et al., 2012) are all affected by degree assortativity. Degree as-
sortativity quantifies the tendency of nodes of similar degree to be

connected by a link, and it is traditionally defined via Pearson’s cor-
relation coefficient

=
〈 〉 − 〈 〉〈 〉

〈 〉 − 〈 〉 〈 〉 − 〈 〉
r

ij i j
i i j j2 2 2 2 (1)

where i and j are the degrees at the two ends of a link and the 〈∙〉
notation represents the average over all links. The assortativity r lies in
the range − ≤ ≤r1 1. When >r 0, the network has an assortative
mixing pattern, and when <r 0, it shows disassortative mixing. An
uncorrelated network exhibits the neutral degree-mixing pattern with

=r 0 (Newman, 2002). One leading hypothesis is that most social
networks have an assortative mixing (Newman and Park, 2003), but
disassortative networks have also been observed, in particular those
derived from online interaction (Holme et al., 2004; Noldus and van
Mieghem, 2015). The definition in Eq. (1) is not without problems. In
networks with heavy tailed degree distributions, it can show spurious
correlations (Litvak and van der Hofstad, 2013). It can also suffer from
large finite-size effects so that a process that provably will lead to an
assortative network shows disassortativity for even rather large
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networks (Xulvi-Brunet and Sokolov, 2005). For this paper, we will just
take Eq. (1) as our definition of assortativity and leave it for a future
study how more elaborate approaches would change the picture.

Assortativity plays an important role in information diffusion (Jiang
et al., 2016) and disease spreading (Eguiluz and Klemm, 2002; Badham
and Stocker, 2010). On networks with community structure, the as-
sortativity within a community can differ much from the assortativity of
the whole network. This fact can be used to improve community de-
tection methods (Ciglan et al., 2013). The geographical distances be-
tween countries in the world put strong constraint on the international
trade network. It has a peculiar structure—disassortative at long dis-
tances while it being assortative nearby (Abbate et al., 2017). Under a
general class of geometric network growth mechanisms by homo-
geneous attachment, the assortativity of the network can be tuned be-
tween assortativity and disassortativity depending on the degree order
in which nodes appear in the network (Murphy et al., 2018). In con-
clusion, the assortativity can be very helpful to understand the structure
and function of social networks and can also help solving management
problems in social networks. Therefore, the research on the time evo-
lution of the degree assortativity is important.

Several models have been proposed to simulate the assortativity of
social networks (Catanzaro et al., 2004; Toivonen et al., 2006; Li et al.,
2014) and find that individuals’ personal motives and the influence
within neighborhood are the key mechanisms for the assortativity in
social networks. A mutual attraction model which can generate
weighted simulation network was proposed to mimic assortative and
disassortative social networks (Wang et al. 2006). Statistically speaking,
the assortativity of a network depends on the balance between three
structural factors: transitivity (clustering), intermodular connectivity,
and relative branching. The first two factors perform a positive con-
tribution to the assortativity of a network, while branching is more
likely associated with disassortative networks (Estrada, 2011). The
concept of the two-walks degree assortativity was proposed to account
for the effect of second neighbors to a given node in a network. The new
index includes more structural information of the networks than the old
one and a class of networks which are degree disassortative and two-
walks degree assortative are observed (Allen-Perkins et al., 2017).

Most of the research on assortativity have only showed the static
topology characteristics of social networks at a certain moment. The
social networks are dynamic and evolving from the initial state to the
final equilibrium as time goes on, so it is vital to study the evolutionary
dynamics of the assortativity to obtain a deeper understanding of the
evolution pattern of the assortativity in social networks. The study of
social networks in Wealink and Pussokram reveals that the assortativity
arises quickly at the beginning of network formation and then decreases
to a stable state after a long-term evolution (Hu and Wang, 2009;
Holme et al., 2004). In our empirical demonstration, the same evolution
pattern of degree assortativity is also found in social networks in Wi-
kipedia, Renren, Primary School, High School,Wikipedia English,Wikipedia
Italian and Wikipedia German. The universal evolution pattern that the
degree assortativity increases at the beginning of evolution and then
decreases to a long-term stable level intrigue us with the following
questions: Why is there such a universal pattern? Is there a generic
explanation for this? As far as we know, there are neither a generic
mechanism nor a specific model to explain and reproduce the universal
evolution pattern of degree assortativity. Our work seeks to shed some
light on the question. We assume that the individual social status level
in a real society plays an important role in the evolution process of
social networks. We furthermore assume that social interactions are
easier to be established among individuals of higher social status—an
effect that we call the bidirectional preferential attachment. In the
evolutionary process of social networks, when the interactions among
individuals with the same status level are dominant, the network tends
to be assortative, and when the interactions among individuals with
different status level are dominant, the network tends to be dis-
assortative. Based on the individual status information and the

bidirectional preferential attachment, we propose a model with a con-
trol parameter to reproduce the universal evolution pattern of degree
assortativity in social networks.

This rest of the paper is organized as follows: First, we make the
empirical demonstration of nine social networks and present the uni-
versal evolution pattern of the assortativity on these networks. Second,
we analyze the inherent features of human social interaction in social
networks and propose the mechanisms to explain the sinusoidal evo-
lution characteristic of the assortativity. Third, we provide a model
based on the blend mechanisms and the analytical solutions of both
degree distribution and assortativity of the model are presented.
Fourth, the simulations based on the empirical data are done to re-
produce the universal evolution pattern of the assortativity. Fifth, we
test the sensitivity of the model with comprehensive simulations under
various parameter settings. Finally, we discuss the significance of the
work and conclude with a summary of our results.

Empirical demonstration and analysis

Data description

Each social network is composed of the set of nodes, which re-
present individual users, and the set of links, which represent a type of
social interaction or friend relationship between the nodes. For the
purpose of this study, we assume that all links are undirected. To study
the evolutionary pattern of online social networks, we collect nine
different datasets, all covering the time span from the initial creation
stage to the later relevant stable stage. These datasets are from Wealink
(www.wealink.com), Wikipedia (www.wikipedia.org), Renren (www.
renren.com), Pussokram (www.pussokram.com), Primary School, High
School (www.sociopatterns.org),Wikipedia English, Wikipedia Italian and
Wikipedia German (http://konect.uni-koblenz.de).

Wealink is a Chinese version of LinkedIn, which provides profes-
sional social networking services and act as a platform for people
posting and looking for job position. The data set begun on 11 May
2005 and covers a duration of 323 days. The network includes 11,262
nodes and 14,050 links.

Wikipedia is the largest collaborative encyclopedic system in the
world and it precisely records all online collaborative activities among
users. The data set begun on 20 Feb 2001 and covers a duration of 353
days. The network includes 16,435 nodes and 29,032 links.

Renren is one of the largest social networks in China and it provides
a platform to make people establish social interaction with each other.
The data set begun on 21 Nov 2005 and covers a duration of 98 days.
The network includes 5554 nodes and 20,121 links.

Pussokram was a Swedish Internet community primarily intended
for romantic communication and targeted at adolescents and young
adults. The data set begun on February 13, 2001 and covers a duration
of 124 days. The network includes 14,547 nodes and 49,931 links.

Primary School and High School is two evolutionary networks of
social interaction. The data is from the data platform. The data of
Primary School includes 238 nodes and 5541 links with a duration of
515 min (Stehlé et al., 2011). The data of High School includes 295
nodes and 2162 links with a duration of 539 min (Mastrandrea et al.,
2015).

Wikipedia English, Wikipedia Italian and Wikipedia German are net-
works including the social interaction of hyperlinks between user arti-
cles of the English Wikipedia, the Italian Wikipedia and the German
Wikipedia, respectively. The data of Wikipedia English includes 100,312
nodes and 693,796 links with a duration of 115 months; the data of
Wikipedia Italian includes 1,204,009 nodes and 15,710,767 links with a
duration of 102 months; and the data of WikipediaGermanincludes
1,655,808 nodes and 14,345,088 links with a duration of 96 months.
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Evolution of degree assortativity

Fig. 1 show the evolution of assortativity in Wealink, Wikipedia,
Renren, Pussokram, Primary School, High School, Wikipedia English, Wi-
kipedia Italian and Wikipedia German respectively. In sub-figs (a)–(i), we
can see that in all these nine social networks, the evolution of the as-
sortativity follow the same pattern, which is formed of three phases.

Phase one (the increase): the assortativity rises in the initial evo-
lution stage of the network creation with a limited number of edges;
Phase two (the decrease): the assortativity begins to drop down when
the number of links exceeds a certain level; Phase three (the plateau):
the assortativity reaches a stable value and long-lasts with the increase
of links in the network. The rise and down of assortativity in these
networks reflect the rule for establishing social interactions among in-
dividuals. In the initial evolutionary stages of the nine social networks,
the number of the registered individuals rapidly increases, and complex
social interactions are established among individuals. Although the
nine social networks are greatly different in network size and evolution
time, they all show striking similarity in the evolution pattern of the
assortativity. What basic rules of establishing social interactions result
in the universal evolution characteristic of assortativity in the nine
social networks? Based on the inherent features of the social networks,
we will analyze the evolutionary mechanisms of the social networks

and explain the universal evolution pattern of the assortativity.

Analysis of the evolutionary mechanisms

We start by considering a few potential mechanisms for the evolu-
tion of social networks. First, a common feature of social network
modeling is to keep the size (number of individuals) as an independent
parameter. Second, the status of individuals should play an important
role in the formative processes of social networks. Empirical research
has shown that individual wealth is distributed according to Pareto
distribution (Arnold, 2015; Newman, 2005; Levy and Solomon, 1997;
Klass et al., 2006). The Pareto distribution is a power law probability
distribution that is used in description of social, scientific, geophysical,
actuarial, and many other types of observable phenomena (Pareto,
1964; Arnold, 2015). In this paper, we make the assumption that this
extends to general features—we call these features social status (but
caution the reader that this term that is used in many ways in the lit-
erature (Bordieu, 1984))—determining the popularity of a person (Lee
and Holme, 2017). Third, when an individual makes a request to es-
tablish social interaction, the inquired individual can choose to accept
or reject the request. There might be a tendency to accept invites from
actors of higher status leading to a well-connected rich club (Colizza
et al., 2006; McAuley et al., 2007; Opsahl et al., 2008; Vaquero and

Fig. 1. The evolutions of the assortativity in the nine social networks. The subfigures (a)-(i) shows the evolution process of the assortativity in Wealink, Wikipedia,
Renren, Pussokram, Primary School, High School, Wikipedia English, Wikipedia Italian and Wikipedia German respectively. Green: increasing area; Yellow: decreasing
area; Blue: stable area.
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Cebrian, 2013). The process of establishing social interaction among
individuals could thus be described as a bidirectional preferential se-
lection process, or bidirectional preferential attachment mechanism.
More importantly, in the evolutionary process of social networks, the
social interactions should happen simultaneously among individuals
with the same status level and among individuals with different status
level. When the social interactions among individuals with the same
status level dominate, the network trends to be assortative, whereas
when the social interactions among individuals with different status
level dominate, the network tends to be disassortative.

Model and analytical solution

Deriving the bidirectional selection model

To model the evolutionary mechanism of assortativity in social
networks, based on the previous research (Zhou et al., 2018), we pro-
pose a bidirectional selection model with individual status information.
We consider a network with a fixed number of individuals N . To model
individual status information, each individual is assigned a status ω
according to the power-law distribution = −p ω cω( ) α, in which c is the
normalized constant, ∈ω a b[ , ] is a positive integral with ≤a b, and α
is the power exponent. The average status ω

¯
of an individual is

= ∑ =
−ω ωcωω a

b α¯
. The rules of establishing social interactions among

individuals are as follows.

1 To model the bidirectional preferential attachment mechanism, at
each time step, we independently chose two individuals. The
probability that an individual i will be chosen depends on the status
ωi of the individual, so that =ω ω NωΠ( ) /i i

¯
and the probability that

two individuals i and j are chosen in one timestep is

=ω ω ω ω NωΠ( , ) 2 /( )i j i j
¯ 2.

2 To model the assortativity or disassortativity of social network, we
assume the probability that two individuals i and j are chosen and
establish social interaction at each time step is

=Λ ω ω ω ω ω ω( , ) Π( , )Δ( , )i j i j i j , in which the control component Δ
follows that

= + −− −e eΔ ρ (1 ρ)λ β a b λ γ(1 ) ( / )1 2 (2)

where ∈ ≥ ≥ρ [0,1], β 0 and γ 0 are model parameters, and
= =λ ω ω ω ω λ ω ω ω ωmax( / , / ), min( / , / )i j j i i j j i1 2 , so that ∈λ1

∈b a λ a b[1, / ], [ / , 1]2 .
After T time steps the simulation is done. We can see that the model

presented in Zhou et al. (2018) is a special case of the present model
when =β 0, =γ 0 and =Δ 1. While the current model is extended to be
able to adjust the assortativity of the simulation network with the
control component.

Basic observations of the model behavior

In this section, we go over some observations about the model be-
havior that follows immediately from the definition. When =ω ωi j,

=λ 11 and =−e 1λ β(1 )1 . The smaller the status gap between ωi and ωj is,
the smaller λ1 is, but the larger −e λ β(1 )1 is. This means that individuals
with similar status level are more likely to establish social interaction,
which drives the network to be assortative. So, −e λ β(1 )1 controls the as-
sortativity of the simulation social network in the evolution process,
and ∈−e [0,1]λ β(1 )1 . The larger β is, the smaller −e λ β(1 )1 is, then the two
chosen individuals are less likely to establish an assortativity connec-
tion by social status, i.e., β is negatively related to the status assorta-
tivity of the simulation network. Conversely, when =ω ai and =ω bj ,

=λ a b/2 and =−e 1a b λ γ( / )2 . The larger the status gap between ωi and ωj

is, the smaller λ2 is, but the larger −e a b λ γ( / )2 is. This means that in-
dividuals with different status level are more likely to establish social
interaction, which drives the network to be disassortative. So, −e a b λ γ( / )2

controls the disassortativity of the simulation social network in the
evolution process, and ∈−e [0,1]a b λ γ( / )2 . The bigger γ is, the smaller is

−e a b λ γ( / )2 . Thus two chosen individuals are less likely to establish a
disassortativity connection by social status, i.e., γ is negatively related
to the status disassortativity of the network. The last important para-
meter ρ represents that two chosen individuals will make contribution
to the assortativity of the simulation social network with probability ρ,
and with probability −1 ρ the two chosen individuals will make con-
tribution to the disassortativity of the simulation social network. The
parameters ρ, β and γ can be constants or functions of evolutionary
time t . Especially, if =β 0 and =γ 0, =Δ 1, and the function of the
control parameter Δ will disappear.

Analytical solution of degree assortativity of the model

Now we will turn to deriving analytical results of both the degree
distribution and the degree assortativity in the model. The expression
for assortativity is Eq. (1), and as long as the joint degree distribution
P l h( , ) is obtained, the assortativity can be derived (Newman, 2002). In
the model, each individual is assigned a status ω according to the
power-law distribution = ∈−p ω cω ω a b( ) , [ , ]α , and the average status

ω
¯
of an individual is = ∑ =

−ω ωcωω a
b α¯

. At each time step, the probability
of selecting a pair of individuals with the status ω and η is

=ω ω NωΠ( ,η) 2 η/( )
¯ 2, and the probability that the two individuals es-

tablish a connection is =Λ ω ω ω( ,η) Π( ,η)Δ( , η). In most empirical on-
line social networks, the average degree of an individual is much
smaller than the size of the network, i.e., the network is sparse
(Leskovec and Krevl, 2015). When ≪t N 2, the simulated network
generated by the model is a sparse network. Both the probabilities of
two different individuals being chosen more than once in t time steps
and one individual being chosen twice at one time step are negligible.
Consequently, the duplicate links and self-connected links in the si-
mulated network can be ignored. At each time step, once an individual
is chosen and establishes a connection with another individual, the
individual’s degree is increased by one. Therefore, after T time steps of
the simulation, the probability P k( ) that an individual has k neigbours
is

∑= ⎛
⎝

⎞
⎠

− ≪
=

−P k p ω T
k

φ ω φ ω T N( ) ( ) ( ) (1 ( )) ,
ω a

b
k T k 2

(3)

in which the function φ ω( ) are as follows

∑=
=

−φ ω ω

Nω

μ

Nω
ΔNcμ( ) 2 ,

μ a

b
α

¯ ¯
(4)

where φ ω( ) is the probability that an individual with the status ω is
chosen and establishes a social interaction with other individual at one
time step, ωμΔ Nω2 /( )

¯ 2 is the probability that two individuals with the
statuses ω and μ respectively are chosen and establish social interaction
at one time step, and −Ncμ α is the number of the individuals with the
status μ in all N individuals.

For two individuals i j, with the status ω and η respectively, if the
degrees of two connected individuals i j, are respectively l and h afterT
time steps of evolution. It implies that the two individuals established a
connection at some time step and the corresponding probability by
binomial theorem is as follows:

⎜ ⎟⎜ ⎟= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

− ⎞
⎠

−

P ω T ω

Nω Nω

ω

Nω Nω
( ,η)

1
2 η

Δ 1 2 η
Δ ,

T

1 ¯ ¯ ¯ ¯

1

(5)

and i connected with other −l 1 individuals in the rest of −T 1 time
steps and the corresponding probability is:

= ⎛
⎝

−
−

⎞
⎠

−− − − −P ω l T
l

φ ω φ ω( , ) 1
1

( ) (1 ( )) ,l T l
2

1 1 ( 1)
(6)

and j connected with other −h 1 individuals in the rest of
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− − −T l1 ( 1) time steps and the corresponding probability is:

= ⎛
⎝

− − −
−

⎞
⎠

−− − − − − −P l h T l
h

φ φ(η, , ) 1 ( 1)
1

(η) (1 (η)) .h T l h
3

1 1 ( 1) ( 1)
(7)

Therefore, the joint degree distribution P l h( , ) of the simulation
network after T time steps of evolution can be derived as follows:

∑ ∑= = ≪
= =

e P l h p ω p η P P P T N( , ) ( ) ( ) .lh
ω a

b

a

b

η
1 2 3

2

(8)

With the joint degree distribution, the remaining degree distribution
can be derived as:

∑=q P l h( , ).h
l (9)

The variance of the remaining degree distribution qh is:

∑ ∑= − ⎛

⎝
⎜

⎞

⎠
⎟σ h q hq .q

h
h

h
h

2 2
2

(10)

Finally, the degree assortativity can be derived as follows:

=
∑ −

r
lh e q q

σ

( )
.l h lh l h

q

,
2

(11)

Fig. 2 shows the comparation of degree assortativity between the
analysis result and the simulation result with the change of. The ana-
lysis result and the simulation result are consistent with each other,
which indicates that the analytical solution of the model is reliable. In
Fig. 2, when ρ increases from 0 to 1, the degree assortativity of the
simulation network changes from disassortative to assortative. The
reason is that with the increase of ρ from 0 to 1, the dominant social
interactions change from among individuals with the different status
level to among individuals with the same status level in the evolution
process of the simulation network, which causes the simulation network
being from disassortative to assortative.

Verification of the model

The rise-and-fall pattern of degree assortativity in the nine empirical
social networks indicates that the interactions among individuals on
these networks evolves from similar to distinct status level. In our
model, this shift of interaction pattern is parameterized with ∈ρ [0,1]
in Eq. (2). In order to reproduce the rise-and-fall pattern, a cosine
function of time in the initial evolution stage can therefore be adopted:

= +At Bρ |cos( )|, ≤ ≤t T1 (12)
where A and B are coefficients. In the later stage of the simulation

process >t T , ρ approaches a constant, meaning that the dominant rule
of establishing social interaction reaches a dynamic equilibrium, and
consequently that the degree assortativity of simulation network tend
to be stable. Fig. 3 shows the comparison of assortativity evolution
between the empirical results and simulation results in the nine social
networks ofWealink,Wikipedia, Renren, Pussokram, Primary School, High
School, Wikipedia English, Wikipedia Italian and Wikipedia German. The
nine empirical networks we study have sizes ranging from a few hun-
dreds to millions of nodes, and the assortativity of them also spans a
large range. Therefore, the nine empirical social networks are re-
presentative for the study of the evolution dynamics of degree assor-
tativity in general.

In each sub-figure, the size, as well as the number of links in the
simulation networks are the same with the empirical networks, and the
parameters β γ ρa, b, , , andT are assigned to appropriate values based
on a large number of simulation tests on the empirical data. Since α is
directly linked to the exponent of the degree distribution of the gen-
erated network, it is determined approximately equal to the power
exponent of degree distribution of the simulated empirical network. In
sub-figure (a) for Wealink, the parameters of the model are

= = = = = ×N 11262, a 1, b 100, α 2, T 4 104. When ≤ ≤1 t T,
= = = − +β γ ρ π tπ T5, 10, |cos( /6 5 /6 )|, the assortativity rises in the

initial evolution stage of the simulation network creation with about
×2 103 links. This indicates that the social interactions established

among the individuals with the same status level are dominant, which
makes the assortativity rise. With the number of links in the simulation
network being from ×2 103 to ×6 103, the assortativity begin to drop
down. This indicates that the social interactions established among the

Fig. 2. The comparation of degree assortativity between the analytic result and the simulation with the change of ρ. Simulation result and analysis result are
compared with = × = = = = × = = ∈β γ ρN 1 10 , a 1, b 10, α 2, T 1 10 , 1, 1, [0,1]4 4 . The blue hollow circle represents the simulation result and the red dash line
represents the analytic result.
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individuals with different status level are dominant, which makes the
assortativity drop down. When < ≤T t 1.26T, = = =ρ β γ0.1, 1, 1,
with the increase of links in the simulation network over ×6 103, the
assortativity of the simulation network reaches a stable value and long-
lasts. This indicates that the social interactions among the individuals
with the same status level and among the individuals with the different
status level reach the dynamic equilibrium, which makes the assorta-
tivity of the simulation network be stable. The simulation results of the
model well reproduce the evolution tendency of the assortativity in
Wealink social network.

In others eight sub-figures, the parameters of the model are as fol-
lows. In sub-figure (b) for Wikipedia,

= = = = = ×N 16435, a 1, b 250, α 2, T 8 104. When ≤ ≤1 t T,
= = = − +β γ ρ π tπ T2, 10, |cos( /3 / )|, when < ≤T t 1.3T,
= = =ρ β γ0.3, 1, 1. In sub-figure (c) for Renren,
= = = = = ×N 5454, a 1, b 100, α 2, T 1.5 104. When ≤ ≤1 t T,
= = = − +β γ ρ π tπ T0.01, 1.5, |cos( /4 5 /6 )|, when < ≤T t 2.1T,
= = =ρ β γ0.5, 1, 1. In sub-figure (d) for Pussokram,
= = = = = ×N 14547, a 1, b 1000, α 2, T 3 104. When ≤ ≤1 t T,
= = = − +β γ ρ π tπ T0.003, 1, |cos( 5 /12 3 /4 )|, when < ≤T t 4T,
= = =ρ β γ0.6, 0.1, 120. In sub-figure (e) for Primary School,
= = = = = ×N 238, a 1, b 5, α 1, T 1.5 104. When ≤ ≤1 t T,
= = = − +β γ ρ π tπ T2, 12, |cos( /4 5 /6 )|, when < ≤T t 1.6T,

= = =ρ β γ0.7, 1, 120. In sub-figure (f) for High School,
= = = = = ×N 295, a 1, b 3, α 1, T 2 103. When ≤ ≤1 t T, =β

= = − +γ ρ π tπ T2, 10, |cos( /6 5 /6 )|, when < ≤T t 2.5T, =ρ
= =β γ0.7, 1, 120. In sub-figure (g) for Wikipedia English,

= = = = = ×N 100,312, a 1, b 250, α 2, T 2.2 106. When ≤ ≤1 t T,
= = = − +β γ ρ π tπ T6, 10, |cos( 5 /12 10 /12 )|, when < ≤T t 1.3T,
= = =ρ β γ0.3, 1, 1. In sub-figure (h) for Wikipedia Italian,
= = = = = ×N 1,204,009, a 1, b 3200, α 2, T 7.5 106. When ≤ ≤1 t T,
= = = − +β γ ρ π tπ T0.003, 1, |cos( 6 /12 14 /12 )|, when < ≤T t 5T,
= = =ρ β γ0.72, 1, 1. In sub-figure (i) for Wikipedia German,
= = = = = ×N 1,655,809, a 1, b 2800, α 2, T 9 106. When ≤ ≤1 t T,
= = = − +β γ ρ π tπ T0.003, 1.15, |cos( 5 /12 9 /12 )|, when < ≤T t 3.2T,
= = =ρ β γ0.68, 1, 1. Although the nine social networks have very

different size and assortativity levels, we can see from the nine sub-
figures (a) - (i) that our model is capable of reproducing the pattern of
time evolution of assortativity in all nine networks. Therefore, the
model including individual status information and bidirectional pre-
ferential attachment with a control parameter can help us to understand
the evolutionary mechanism of human social interaction behavior in
social networks.

Fig. 3. The comparison of assortativity evolution between the empirical results and simulation results in the nine social networks. In each sub-figure, the size, as well
as the number of links in the simulation networks are the same with the empirical networks. The red curves represent the empirical results and the black curves
represent the simulation results.
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Simulation of the model

In order to understand the model comprehensively, the simulations
of the model are done in different simulation conditions. Fig. 4 shows
the evolution of assortativity with the change of β in different simula-
tion conditions. In Fig. 4(a), the values of β and γ are small and

∈ =β γ[0.01, 0.2], 0.1, when = =β γ0.01, 0.1, the assortativity fluc-
tuates in a very small range. With an increasing, assortativity fluctuates
more. This indicates that the assortativity of the simulation network is
sensitive to β and γ . In Fig. 4(b) and Fig. 4(c), the value of β and γ is
bigger than the ones in Fig. 4(a), the evolution of assortativity varies in
a much larger range. As β and γ control the intensity of the assortativity
and disassortativity of the simulation network. The bigger β or γ is, the
stronger the assortativity or disassortativity is. In Fig. 4(a), 4(b) and
4(c), the network is initially assortative. On the other hand, in Fig. 4(d),
4(e) and 4(f), the network is initially disassortative. The reason is that

=ρ tπ T|cos( / )| in Fig. 4(a), 4(b) and 4(c), and =ρ tπ T|sin( / )| in
Fig. 4(d), 4(e) and 4(f). When =ρ tπ T|cos( / )|, ≥ρ 0.5 for ≤ Tt /3, so the
social interactions established among the individuals with the same
status level are dominant, which makes the simulation network assor-
tative in the initial stage of the evolution. When =ρ tπ T|sin( / )|, ≤ρ 0.5
for ≤ Tt /6, so the social interactions established among the individuals
with the different status level are dominant, which makes the simula-
tion network disassortative in the initial stage of the evolution.

Fig. 5 shows the evolution of assortativity with the change of α and
an interesting phenomenon was found. In the initial stage of evolution,
for ∈α [1,2.5], when ≤ ×t 0.2 106, r is relatively large ( ∈r [0.4,0.8]);
while when ≥ ×t 0.8 106, r is relatively small ( ∈ − −r [ 0.4, 0.2]). The
assortativity and disassortativity of the simulation network can reach
the greatest intensity in different evolution stages for ∈α [1,2.5]. This
means that a lot of ties are formed not only among individuals with the
same social status but also among individuals with different social
status. This causes that a lot of information transmit not only among
individuals with the same social status but also among individuals with
different social status, which makes the social network being a full
energy and vitality. Empirical research has shown that the range of the
power exponent in Pareto wealth distribution is also ∈α [1,2.5] (Levy
and Solomon, 1997; Newman, 2005; Klass et al., 2006; Arnold, 2015),
echoing the applicability and generalizability of the model. Personal

wealth has long been adopted as a measurement for the quantification
of individual social status in human society (Angle, 1986). Therefore,
we conjecture that the individual social status distribution in the human
society may drive the social evolution in a way of self-optimization to
promote the social interaction and information transmission among
individuals. Highly efficient information transmission among in-
dividuals can greatly promote the progress and the development of the
human society (Hamelink, 1997).

Fig. 6 shows the evolution of assortativity with the change of b.
With ∈b [1, 16], we can observe a phase transition. When

= =a b1 and 1, the assortativity r is a constant and is equal zero in the
evolution process of the simulation network, while when

= >a b1 and 1, the assortativity r is mutational to take place clear
change in the evolution process of the simulation network. This reason
is that when = =a b1, 1, all individuals are at the same status level
and there is no status gap. This causes = = =λ λ1, 1, Δ 11 2 , and the
function of the control parameter Δ disappears. The social interactions
among individuals are stochastic and the significance of bidirectional
preferential attachment also disappears. Consequently, the simulation
network is neither assortative nor disassortative in the evolutionary
process, i.e., the assortativity r is always zero. When = >a b1 and 1,
the gap in status appears and the control parameter Δ begins to take
effect, which controls the simulation network to be assortative or dis-
assortative in the evolution process. It is worth noting that when

= >a b1 and 1, with =β 0 and =γ 0, =Δ 1, and the function of the
control parameter Δ will also disappear, but the bidirectional pre-
ferential attachment is still present. This will cause that the social in-
teractions prefer to be established among individuals with the different
social status in the evolution process, which makes the simulation
network disassortative. These results show that our model is accurate
and effective in controlling the assortativity and disassortativity of the
simulated networks and suggest that a skewed distribution of social
status can play an important role in the emergence of degree correla-
tions of social networks.

Conclusion and discussion

Using nine temporal empirical social network datasets from
Wealink, Wikipedia, Renren, Pussokram, Primary School, High School,

Fig. 4. The evolution of assortativity with the change of β in different simulation condition. In all sub-figures, = × = = = ×N 1 10 , a 1, b 50, T 1 104 6 and =α 2. (a)
∈ = =β γ ρ tπ T[0.01, 0.2], 0.1, |cos( / )|. (b) ∈ = =β γ ρ tπ T[0.1, 2], 1, |cos( / )|. (c) = ∈ = =β γ ρ tπ T[1, 20], 10, |cos( / )|. The parameters in sub-figures (d), (e) and

(f) are the same ones as in sub-figures (a), (b) and (c) respectively, except =ρ tπ T|sin( / )|.
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Wikipedia English, Wikipedia Italian and Wikipedia German, we have
uncovered a surprisingly consistent pattern on the evolution of network
assortativity, that the assortativity of social networks increases rapidly
at the beginning of network growth, then decays to an equilibrium after
certain links being created. Based on Pareto wealth distribution and
bidirectional preferential attachment mechanism, we propose a

temporal network model with a control parameter and provide the
evolutionary analytical solutions of both the degree distribution and the
assortativity in the model. The simulation results indicate that the
model can reproduce the universal evolution pattern of assortativity of
the social networks. In order to understand the model comprehensively,
we scanned its parameter space. These simulation results indicate that

Fig. 5. The evolution of assortativity with the change of α in different simulation conditions. Simulations are done with
= × = = ∈ = × = =

=

β γ ρ

tπ T

N 1 10 , a 1, b 50, α [0,3], T 1 10 , 15, 10,

|cos( / )|

4 6 .

Fig. 6. The evolution of assortativity with the change of b in different simulation conditions. Simulations are done with
= × = ∈ = = × = =

=

β γ ρ

tπ T

N 1 10 , a 1, b [1, 16], α 2, T 1 10 , 15, 10,

|cos( / )|

4 6 .
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Pareto distributions in the human society may drive the social evolution
in a way of self-optimization to promote the social interaction among
individuals and the wealth gap plays an important role in both assor-
tative and disassortative regimes of social networks. Therefore, a Pareto
distribution of social status and a bidirectional preferential attachment
mechanism help us to understand the evolution of social networks.

As far as we know, our model is the first that can mimic the uni-
versal evolution pattern of the assortativity in the social network. Its
simplicity allows more specific mechanisms to be integrated into future
modeling efforts. Above all, the bidirectional preferential attachment
model with the individual status information and a control parameter
implies us the possible and worthwhile efforts in exploring the unified
mechanisms behind various networks. Because of our successful mod-
eling of the universal evolution pattern of assortativity we think this
could be a more general model of social network formation. This work
can be the basis for future exploration about the relation between social
interaction and information diffusion.

Acknowledgements

XL is supported by the National Natural Science Foundation of
China (82041020, 71771213, 91846301), the Sichuan Science and
Technology Plan Project (2020YFS0007), and the Hunan Science and
Technology Plan Project (2017RS3040, 2018JJ1034, 2019GK2131). BZ
is funded by the Natural Science Foundation of China (61503159) and
Jiangsu University Overseas Training Program. PH is supported by JSPS
KAKENHI (JP 18H01655) and the Grant for Basic Science Research
Projects by the Sumitomo Foundation.

References

Abbate, A., De Benedictis, L., Fagiolo, G., Tajoli, L., 2017. Distance-varying assortativity
and clustering of the international trade network. Networks Science forthcoming.

Allen-Perkins, A., Pastor, J.M., Estrada, E., 2017. Two-walks degree assortativity in
graphs and networks. Appl. Math. Comput. 311, 262–271.

Angle, J., 1986. The surplus theory of social stratification and the size distribution of
personal wealth. Soc. Forces 65 (2), 293–326.

Arnold, B.C., 2015. Pareto Distribution. John Wiley and Sons, Ltd.
Badham, J., Stocker, R., 2010. The impact of network clustering and assortativity on

epidemic behaviour. Theor. Popul. Biol. 77 (1), 71–75.
Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science 286

(5439), 509–512.
Barrat, A., Barthelemy, M., Vespignani, A., 2008. Dynamical Processes on Complex

Networks. Cambridge University Press.
Becker, J., Brackbill, D., Centola, D., 2017. Network dynamics of social influence in the

wisdom of crowds. Proc. Natl. Acad. Sci. 114 (26), 5070–5076.
Boguná, M., Pastor-Satorras, R., Vespignani, A., 2003. Absence of epidemic threshold in

scale-free networks with degree correlations. Phys. Rev. Lett. 90 (2), 028701.
Bordieu, P., 1984. Distinction: A Social Critique of the Judgement of Taste. Routledge.
Catanzaro, M., Caldarelli, G., Pietronero, L., 2004. Assortative model for social networks.

Phys. Rev. E 70 (3), 037101.
Ciglan, M., Laclavík, M., Nørvåg, K., 2013. On Community Detection in Real-world

Networks and the Importance of Degree Assortativity. In Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
1007-1015. ACM.

Colizza, V., Flammini, A., Serrano, M.A., Vespignani, A., 2006. Detecting rich-club or-
dering in complex networks. Nat. Phys. 2 (2), 110.

Del Vicario, M., Zollo, F., Caldarelli, G., Scala, A., Quattrociocchi, W., 2017. Mapping
social dynamics on Facebook: the brexit debate. Soc. Networks 50, 6–16.

Di Bernardo, M., Garofalo, F., Sorrentino, F., 2007. Effects of degree correlation on the

synchronization of networks of oscillators. Int. J. Bifurc. Chaos 17 (10), 3499–3506.
Eguiluz, V.M., Klemm, K., 2002. Epidemic threshold in structured scale-free networks.

Phys. Rev. Lett. 89 (10), 108701.
Estrada, E., 2011. Combinatorial study of degree assortativity in networks. Phys. Rev. E

84 (4), 047101.
Faraj, S., Jarvenpaa, S.L., Majchrzak, A., 2011. Knowledge collaboration in online com-

munities. Organ. Sci. 22 (5), 1224–1239.
Hamelink, C.J., 1997. New Information and Communication Technologies, Social

Development and Cultural Change Vol. 86 United Nations Research Institute for
Social Development, Geneva.

Holme, P., Edling, C.R., Liljeros, F., 2004. Structure and time evolution of an Internet
dating community. Soc. Networks 26 (2), 155–174.

Holme, P., Zhao, J., 2007. Exploring the assortativity-clustering space of a network’s
degree sequence. Phys. Rev. E 75 (4), 046111.

Hu, H.B., Wang, X.F., 2009. Evolution of a large online social network. Phys. Lett. A 373
(12), 1105–1110.

Jiang, J., Qu, Y., Yu, S., Zhou, W., Wu, W., 2016. Studying the Global Spreading Influence
and Local Connections of Users in Online Social Networks. In Computer and
Information Technology (CIT), IEEE International Conference on. pp. 431–435.

Kim, J., Hastak, M., 2018. Social network analysis. International Journal of Information
Management: The Journal for Information Professionals 38 (1), 86–96.

Klass, O.S., Biham, O., Levy, M., Malcai, O., Solomon, S., 2006. The Forbes 400 and the
Pareto wealth distribution. Econ. Lett. 90 (2), 290–295.

Lee, E., Holme, P., 2017. Social contagion with degree-dependent thresholds. Phys. Rev. E
96, 012315.

Leskovec, J., Krevl, A., 2015. Large Network Dataset Collection. snap.stanford.edu.
Levy, M., Solomon, S., 1997. New evidence for the power-law distribution of wealth.

Phys. A Stat. Mech. Its Appl. 242 (1), 90–94.
Li, M., Guan, S., Wu, C., Gong, X., Li, K., Wu, J., Lai, C.H., 2014. From sparse to dense and

from assortative to disassortative in online social networks. Sci. Rep. 4.
Litvak, N., van der Hofstad, R., 2013. Uncovering disassortativity in large scale-free

networks. Phys. Rev. E 87, 022801.
Mastrandrea, R., Fournet, J., Barrat, A., 2015. Contact patterns in a high school: a

comparison between data collected using wearable sensors, contact diaries and
friendship surveys. PLoS One 10 (9), e0136497.

McAuley, J.J., da Fontoura Costa, L., Caetano, T.S., 2007. Rich-club phenomenon across
complex network hierarchies. Appl. Phys. Lett. 91 (8), 084103.

Murphy, C., Allard, A., Laurence, E., St-Onge, G., Dubé, L.J., 2018. Geometric evolution of
complex networks with degree correlations. Phys. Rev. E 97 (3), 032309.

Newman, M.E.J., 2002. Assortative mixing in networks. Phys. Rev. Lett. 89 (20), 208701.
Newman, M.E.J., 2005. Power laws, Pareto distribution and Zipf’s law. Contemp. Phys. 46

(5), 323–351.
Newman, M.E.J., Park, J., 2003. Why social networks are different from other types of

networks. Phys. Rev. E 68 (3), 036122.
Noldus, R., van Mieghem, P., 2015. Assortativity in complex networks. J. Complex Netw.

3 (4), 507–542.
Ohtsuki, H., Hauert, C., Lieberman, E., Nowak, M.A., 2006. A simple rule for the evolution

of cooperation on graphs and social networks. Nature 441 (7092), 502.
Opsahl, T., Colizza, V., Panzarasa, P., Ramasco, J.J., 2008. Prominence and control: the

weighted rich-club effect. Phys. Rev. Lett. 101 (16), 168702.
Opsahl, T., Agneessens, F., Skvoretz, J., 2010. Node centrality in weighted networks:

generalizing degree and shortest paths. Soc. Networks 32 (3), 245–251.
Pareto, V., 1964. Cours d’économie politique. Librairie Droz.
Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Quaggiotto, M., Broeck,

W., Régis, C., Lina, B., Vanhems, P., 2011. High-resolution measurements of face-to-
face contact patterns in a primary school. PLoS One 6 (8), e23176.

Strogatz, S.H., 2001. Exploring complex networks. Nature 410 (6825), 268.
Toivonen, R., Onnela, J.P., Saramäki, J., Hyvönen, J., Kaski, K., 2006. A model for social

networks. Phys. A Stat. Mech. Its Appl. 371 (2), 851–860.
Vaquero, L.M., Cebrian, M., 2013. The rich club phenomenon in the classroom. Sci. Rep.

3, 1174.
Xulvi-Brunet, T., Sokolov, I., 2005. Changing correlations in networks: assortativity and

disassortativity. Acta Phys. Pol. B 36 (5), 1431–1455.
Zhou, D., Stanley, H.E., D’Agostino, G., Scala, A., 2012. Assortativity decreases the ro-

bustness of interdependent networks. Phys. Rev. E 86 (6), 066103.
Zhou, B., Yan, X.Y., Xu, X.K., Xu, X.T., Wang, N., 2018. Evolutionary of online social

networks driven by pareto wealth distribution and bidirectional preferential attach-
ment. Phys. A Stat. Mech. Its Appl. 507, 427–434.

B. Zhou, et al. Social Networks 63 (2020) 47–55

55

http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0005
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0005
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0010
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0010
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0015
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0015
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0020
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0025
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0025
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0030
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0030
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0035
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0035
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0040
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0040
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0045
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0045
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0050
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0055
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0055
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0060
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0060
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0060
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0060
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0065
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0065
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0070
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0070
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0075
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0075
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0080
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0080
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0085
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0085
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0090
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0090
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0095
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0095
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0095
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0100
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0100
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0105
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0105
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0110
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0110
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0115
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0115
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0115
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0120
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0120
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0125
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0125
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0130
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0130
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0135
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0140
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0140
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0145
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0145
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0150
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0150
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0155
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0155
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0155
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0160
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0160
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0165
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0165
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0170
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0175
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0175
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0180
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0180
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0185
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0185
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0190
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0190
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0195
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0195
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0200
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0200
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0205
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0210
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0210
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0210
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0215
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0220
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0220
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0225
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0225
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0230
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0230
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0235
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0235
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0240
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0240
http://refhub.elsevier.com/S0378-8733(20)30025-3/sbref0240

	Universal evolution patterns of degree assortativity in social networks
	Introduction
	Empirical demonstration and analysis
	Data description
	Evolution of degree assortativity
	Analysis of the evolutionary mechanisms

	Model and analytical solution
	Deriving the bidirectional selection model
	Basic observations of the model behavior
	Analytical solution of degree assortativity of the model
	Verification of the model
	Simulation of the model

	Conclusion and discussion
	Acknowledgements
	References




